import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
sns.set(color_codes = True)
from data import *
from scipy import stats
def statistiques(data):
mini = np.min(data)
maxi = np.max(data)
moy = np.mean(data)
med = np.median(data)
std = np.std(data)
print('Valeur minimale : ' + str(mini))
print('Valeur maximale : ' + str(maxi))
print('Valeur moyenne : ' + str(moy))
print('Valeur mediane : ' + str(med))
print('Ecart-type : ' + str(std))
return (mini, maxi, moy, med, std)
m0 = 0
sigma0 = 1
sigma1 = 10
N = 10000
m4 = 10
sigma4 = 10
m5 = 0.001
sigma5 = 0.01
X1 = np.random.normal(m0, sigma0, N)
(mini1, maxi1, moy1, med1, std1) = statistiques(X1)
plt.figure()
plt.scatter(np.arange(N), X1, s= 10)
plt.title('X1', fontsize=14)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.show()
y1 = pd.Series(X1, name = "variable X1")
sns.distplot(y1, bins=30, fit = stats.norm, kde= False);
plt.title('Histogramme')
plt.xlabel('Réalisations de la variable X1')
plt.ylabel('Fréquences normalisées')
plt.show()
X2 = np.random.normal(m0, sigma1, N)
(mini2, maxi2, moy2, med2, std2) = statistiques(X2)
plt.figure()
plt.scatter(np.arange(N), X2, s= 10)
plt.title('X2', fontsize=14)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.show()
y2 = pd.Series(X2, name = "variable X2")
sns.distplot(y2, bins=30, fit = stats.norm, kde= False);
plt.title('Histogramme')
plt.xlabel('Réalisations de la variable X2')
plt.ylabel('Fréquences normalisées')
plt.show()
X3 = np.zeros(N)
X3[:int(N/2)] = np.random.normal(m0 - 12, sigma1, int(N/2))
X3[int(N/2):] = np.random.normal(m0 + 12, sigma1, int(N/2))
np.random.shuffle(X3)
(mini3, maxi3, moy3, med3, std3) = statistiques(X3)
plt.figure()
plt.scatter(np.arange(N), X3, s= 10)
plt.title('X3', fontsize=14)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.show()
y3 = pd.Series(X3, name = "variable X3")
sns.distplot(y3, bins=60, fit = stats.norm, kde= False);
plt.title('Histogramme')
plt.xlabel('Réalisations de la variable X3')
plt.ylabel('Fréquences normalisées')
plt.show()
X4 = np.random.uniform(-17.35, 17.35, N)
(mini4, maxi4, moy4, med4, std4) = statistiques(X4)
plt.figure()
plt.scatter(np.arange(N), X4, s= 10)
plt.title('X4',fontsize=14)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.show()
y4 = pd.Series(X4, name = "variable X4")
sns.distplot(y4, bins=60, kde= False, norm_hist = True, fit = stats.uniform);
plt.title('Histogramme')
plt.xlabel('Réalisations de la variable X4')
plt.ylabel('Fréquences normalisées')
plt.show()
fig, ax = plt.subplots(figsize = (15, 8))
sns.distplot(y2, ax=ax, kde=False, norm_hist = True, fit = stats.norm, bins = 60)
sns.distplot(y4, ax=ax, kde=False, norm_hist = True, fit = stats.uniform, bins = 60)
plt.xlabel('Réalisations des variables X4 et X5')
plt.show()